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A theore t ica l  descr ip t ion  is given of the t e m p e r a t u r e  field of a spa rk  produced by a high-  
voltage pulsed d i scharge .  The spa rk  is cons idered  to be an instantaneous vo lumet r ic  heat  
source. 

Activated particles which diffuse into the surrounding space are created in spark channels (tempera- 
ture varies in the range 10~-104~ that are produced by a high-voltage pulsed discharge in a short period 

of time. Diffusion and formation of products occurs in a background of a spark temperature field that is 
dying out. Because of this, it is interest to consider the temperature field of individual sparks. 

We represent the spark channel in the form of a finite cylinder of length 21 and diameter 2r 0 heated 
uniformly over its entire volume to a temperatures T o at zero time. Essentially, this is equivalent to an 
instantaneous uniform release of heat in that same volume. In this case, the temperature in the spark 
channel at time t = 0 is 

To = q ~-. (I) 

I t  is a s sumed  the spa rk  is s t ruck  in an i so t ropic  uniform medium.  The heat  is propagated  exclus ive ly  
by t h e r m a l  conductivi ty s ince t r a n s f e r  of hea t  by convection can be neglected because  of the shor t  l i fe t ime 
of the spa rk  (~ 10 -7 sec).  I t  is a s sumed  the the rmophys ica l  coeff icients  of the medium are  independent of 
t e m p e r a t u r e .  

The equation for  t he rm a l  conductivity in a medium moving with a veloci ty  v has the fo rm 

a x T~ = a A T  - -  vT'~ @ - ~  f ( , y, z, t) , (2) 

where  f(x, y, z, t) is a function of the heat  source .  

1. We cons ider  the case  of the s ta t ic  mode (gas veloci ty  v = 0). T r a n s f o r m i n g  to cyl indr ical  co-  
o rd ina tes ,  we have in place of Eq. (2) 

T ; = a  T'~r+ T ; + T ; z  + - - f ( r , z , t ) ,  (3) 

where  

f (r ,  z, l) = {q60(t) I z i . ( ,  l, r < r o 
I z [ > l ,  r > r o .  

Init ial  and boundary conditions for  the p rob lem are :  

T (r, z, 0) = 0, 

T~ = T'~lr.~0 = 0 (because of symmetry), 

T : - -  G l  . . . . .  =0,  T(r ,  z, t)l . . . . .  =0.  

We shall  s eek  a solution for  the p rob lem r ep re sen t ed  by Eqs. (3), (4), and (5) in two ways.  
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A. We solve Eq. (3) for  the initial and boundary conditions (4) and (5) indicated above by means of a 
Green 's  function 

. ; 2; 
T(r, z, t) = a ~dt' r'dr' dz'G(r, z, % tlr', z', ~', t')f(r', z', ~', t'). ~ J  0 0 0 

(6) 

The function G is given in cylindrical coordinates by the expression 

1 [ r2+r" - -2r r ' cos~ '+( z - - z ' )  ' ] 
6 = [4m(t - -  t')l 3/~ exp - -  4a (t --  t') (7) 

Substituting Eqs. (4) and (7) into Eq. (6) and integrating with respect  to t '  and allowing for the propert ies  
of the 6 function, we have 

l r j  2$t 

T(r' z' t)= qa ~ Y -, [ r ~ + r ' ' ' 2 r r ' c ~  (8) i4~at13/2 - dz' r'dr' de#' exp --  ~'~ 
--I 0 0 

Then, carrying out the integration with respect  to z and ~' [1], we find 

I [ ~  ]r~ I 1 {rr '~  T (r, z, t) = q err l + z l - -  z r 2 + r" 4 - ~  2]/-a-t + err - -  r'dr' exp �9 Io . (9) 
2V at 4at \ 2at ] o 

The las t  integral can be expressed through the P-function tabulated in [2]. Equation (9) then t ransforms  to 

T ( r , z , t ) =  qa ( r o p  r ) [e r f  l + z  +err l - - z  ] (I0) 
I/9 ' V ~  ~ 2-v~Tj 

Here 

r~  r (r0 r)  XSdrexp[ ,11, 
P V ~ t '  ]/2--at -- 2at 4at o~ 2at ]" 0 

Considering Eq. (i), we obtain 

, ( T (r, z, t)= --~ ToP - -  r o2_~ I/2air ) [ 2vatl+z l - - z  ] , .,:---. err ~ + err _ . 
V 2vat  

(12) 

The resultant  equations (10) and (12) also give a solution of the problem of the temperature  field of 
a spark for a gas velocity v = 0. 

Temperature  on the channel axis,  T(0, z, t), 

1 ( r o T(O, z, t)= ~ ToP . V ~  t , 

For  r = 0, the P-function is 

P (  r~ 

is determined from the following formula: 

0)[  /+. 
V2-~ ed 2/at-- + err . 

1/2-~ = 1 --exp -- 4a---/- 

(13) 

therefore ,  we obtain for T(0, z, t) the analytic expression 

, [ (  l[or, l+' +or,'-'] T(0, z, l )=-~-  To l--exp - -  4at ]J 2Va--[ ~ " (14) 

The temperature at the boundary of the channel, T(r0, z, t), is given by the equation 

1 [ ( r~ 'I [ r~ , ] [  l + z  + e r f  l--z 1 
T(ro, z, t )=-~-  To l--exp --  2at } o~ 2at ] err 2Va-{ - 2 ~  " (15) 
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Fig. 1 

T/T 0 as a function of r/r0: Fig. 1. I) at  ze ro  t ime;  
2.5. I0-5; 5) 5"i0-5; 6) i0 -4 see. 

Fig. 2. Temperature distribution in discharge gap: 
3) 5- 10-5; 4) 1 -10  -4 sec .  
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Fig. 2 

2) after 10-6; 3) 10-5; 4) 

i) after 10-6; 2) 2.5.10-5; 

B. Applying the L a p l a c e - H a n k e l  t r an s fo rma t ion  

,(p, G, z)----i exp(--pt)dt i rT(r, z, t)Jo((~r)dr 
0 0 

to Eq. (3), we obtain the ope ra t o r  equations 

t '  0 

P~P, = To ~ Jo ((~r) rdr -{- a (-- o3,1 + *~zz), 
0 (16) 

Here ,  the subsc r ip t s  1 and 2 r e f e r  r e spec t ive ly  to the regions  [zl -<- l and Izl > L 
conditions t r a n s f o r m  to: 

*;L=0 = o, % = =  = o, 

*,1==, = *+=, ,  %lz=, = %lz=, 

F u r t h e r m o r e ,  the boundary 

(17) 

The equation sy s t em  (16) has  the following solutions;  
ro  

To j" Jo (~r)rdr 
, , 0 ~1 = A1 exp - -  + ~z  + A 2 exp -a- ~- -~ 

a P + ao ~ ' 

The integral  t r a n s f o r m s  found a f t e r  subst i tut ion of the values of the coeff icients  A1, A 2, B l, and B 2 with 
the help of Eq. (17) have the fo rm 

Yo 

To .f Jo (~r') r'dr' 
o ~1 - -  1 

.1= P + ao~ / ~ -  exp [--  V/ - '~-~ '+~(z+l , ]  -~ exp I - - V  l 1  p _ , _  + +<! 

ro 

To j' Jo (er') r'dr' 
0 

P + ao ~ 
p / 

The inverse  t r a n s f o r m s  of the functions ~l and ~b2, in accordance  with the express ions  for  the inverse  L a -  
p l a c e - H a n k e l  t r ans fo rma t ion ,  a re  given by a single express ion  

r 0 r~ 

T (r, z, t) = ~ T O err ~ 2 V a T  + err ~ - ~  r'dr' exp [--  a~2t) Jo (~r) Jo (ar') ~d~. 
0 
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Fig. 3. Dependence of T / T  0 on t 
in the dynamic mode: 1) for  v = 0; 
2) 1.0 m/see ;  3) 5.0 m/ see .  

Fur ther ,  we obtain as the resul t  of identity t ransformat ions  [1] 

ro 

err ~ + eri __ r'dr' exp 
. 2 / at  2 / at . 

0 

& + r ' "  ] I  ~ ( rr' 
4at \ 2at )"  

Considering Eq. (11), we obtain for the tempera ture  function 

I ( r o r ) [  l + z  l - - z J  T (r, z, t ) = ~  ToP err 5 eri - - -  
~, 2at ~/ ff-~ 2 v at 2]/-~{ 

which agrees  p rec i se ly  with Eq. (12). 

The calculated dependence of the reduced tempera ture  T /T  0 on the dimensionless radius r / r  0 is 
shown in Fig. 1 for different t imes (at z = 0). In the calculations,  we used the values: a = 1 .87.10 -5 m 2 
/ s e c  for a i r  [4], 2r 0 = 1.10 -4 m, and 2l = 2 - 10 -3 m. It  is c lear  f rom the figure that heat is t ranspor ted  
an insignificant distance.  Thus the region at a d iameter  3r  0 is heated only 10 -4 see af ter  spark  initiation, 
but the heating is negligible. 

Equation (12), (14), and (15) indicate the form of t empera ture  distribution along the discharge gap 
is independent of r. The tempera ture  profile for the spark  channel axis is shown in Fig. 2. The t empera -  
ture  T /T  0 remains  prac t ica l ly  constant over  the entire length of the discharge gap, dropping sharply at 
the end to a value of 0.5 T /T  0 for z = 0. The value of the function T /T  0 is a lmost  unchanged over  the short  
t imes  we are  considering since the loss of heat along the x axis into the surrounding medium is negligibly 
smal l .  

2. We consider  the case of the dynamic mode v ~ 0. Using the substitution 

T(x, y, z, t ) =  U(x, y, z, t) exp [ 4a § ' 

we bring Eq. (2) to the form 

~ [ U~ : aAU + - ~  f (x, y, z, t) exp v~t 
4a 2a 

Then t ransforming to cylindrical  coordinates and applying the Green ' s  function method, we obtain 

T (r, z, 9, t ) =  qa exp [ - v2t + vrcos_____~] [eft l + z + err l - - z  l 
SniP, [ 4a 2a 2 V ~  ~ j  

ro 2~ 

[ ];  [ ] r ~ + r" exp rr' cos (~p - -  q~') vr' - -  - -  - -  cos q~' (18) X r'dr' exp 4at 2at 2a d~'. 
0 0 

The integral with respec t  to ~' in Eq. (18) is not expressible  in general  form through tmownfunctions. We 
therefore  confine ourse lves  to the two limiting cases :  t e m p e r a t u r e  distribution in the direction ~ = 0 con- 
eiding with gas motion and in the opposite direct ion ~ = v. In that case,  integrating with respec t  to ~, we 
obtain 
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1 
T (r, z, O, t )=- - z -ToP  

"2  
r~ 

V2-at ' V ~ t  err __ + err __ (19) 
2~ at 2Vat  ' 

1 
T (r, z, ~, t ) = ~ -  ToP ,g 

ro r + v t  ) f  l + z  l - - z  ] (20) 
V ~  ' :V--2~ e r r s + e r r - -  . 2V at 2 V ~  - . 

In the l imit ing case  v = 0, Eqs .  (19) and (20) t r a n s f o r m  identical ly into Eq. (12). 

The t ime  dependence of the reduced t e m p e r a t u r e  on the spa rk  channel axis is shown in Fig. 3 for  
va r ious  gas  flow ra te s .  Fall  in t e m p e r a t u r e  occurs  ve ry  rap id ly  and T / T  0 (for v = 1 m / s e c )  p rac t i ca l l y  
goes  to ze ro  in a t ime  t = 5 .10  -4 sec .  A di f ference  in the values of the function T / T  0 in the s ta t ic  and 
dynamic  modes  is  only obs e rved  for  v > 0.5 m / s e e .  

The equations (10), (12}, (14), (15), (19), and (20) which w e r e  obtained make it poss ib le  to p e r f o r m  
numer i ca l  calculat ions of the t e m p e r a t u r e  f ields in spa rks  both for  a given value of T o and for  known values 
of the ene rgy  and radius  of a s p a r k  channel.  
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