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A theoretical description is given of the temperature field of a spark produced by a high-
voltage pulsed discharge. The spark is considered to be an instantaneous volumetric heat
source,

Activated particles which diffuse into the surrounding space are created in spark channels (tempera-
ture varies in the range 10°~10%°K) that are produced by a high-voltage pulsed discharge in a short period
of time. Diffusion and formation of products occurs in a background of a spark femperature field that is
dying out. Because of this, it is interest to consider the temperature field of individual sparks.

We represent the spark channel in the form of a finite cylinder of length 21 and diameter 2r; heated
uniformly over its entire volume to a temperatures T, at zero time. Essentially, this is equivalent to an
instantaneous uniform release of heat in that same volume, In this case, the temperature in the spark
channel at time t = 0 ig

a

It is assumed the spark is struck in an isotropic uniform medium. The heat is propagated exclusively
by thermal conductivity since transfer of heat by convection can be neglected because of the short lifetime
of the spark (~ 107 sec). It is assumed the thermophysical coefficients of the medium are independent of
temperature,

The equation for thermal conductivity in a medium moving with a velocity v has the form

Ty = aAT—vT;Jr%f(x, ¥, 2, 1), @

where i(x, y, z, 1) is a function of the heat source.

1. We consider the case of the static mode (gas velocity v = 0). Transforming to cylindrical co-
ordinates, we have in place of Eq, (2)

M= Tk T4 12|+ 2020, (3)
r
where
f(r,z,t):{qé(t) 2] <1, r<r, “
0 |z[>L r>r,

Initial and boundary conditions for the problem are:
T(r, 2 0y =0,
T, =T, [,_z___o = 0 (because of symmetry), (5)
Ty =Tolrome =0, T(r, 2, 8) |, =0.
We shall seek a solution for the problem represented by Eqs. (3), (4), and (5) in two ways.
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A. We solve Eq. (8) for the initial and boundary conditions (4) and (5) indicated above by means of a
Green's function

@ o P2 g
T(r, 2 )= —g—j‘dt' j‘ r'dr’ j‘dz’G(r, 2, @ U, 2, 9, V(' 2, 9, ). (6)
0 0 0

The function G is given in cylindrical coordinates by the expression

1 P —2rr cos’ +(z—2')?
¢ P N— — : 7
[mag—e)" P [ ta(i—7) ] @

Substituting Eqs. (4) and (7) into Eq. (6) and integrating with respect to t' and allowing for the properties
of the 6 function, we have

. 4 Te 2% 2
. ‘g , 2 r" —2rr' cos@’ + (2—2')?
T, 2, )= —I% — | a2 d _ @ . (8)
5 D)= = a® X 5 rer qu’ e"p[ ta(i—1)
—1 0 0
Then, carrying out the integration with respect to z and ¢' [1], we find
g I+2 l—Z]r' , o rr’
T, 2, t) = erf erf A rd —_ I . (9
( ) [ 4 [ oVat + oy at Xr TP [ 4at °( 2at )
0
The last integral can be expressed through the P-function tabulated in [2]. Equation (9) then transforms to
ga ro r L4z l—=z (10)
T(r,z, ) =-"—P 9 -, - erf — +erf ——=1.
( ) 24 <l/2at V2at)[ 2V at + 2V o ]
Here
r r ¢ P rr’
Pl T _\_ et exp| — DT ( . (11)
(VQat ]/2at) 2at 5' g eXp[ sat ] °\ ot
0
Considering Eq. (1), we obtain
’ 1 r r [+2 [—z
T(r, 2z, )= — T,P 9. _ﬁ> orf = § LA 12
r. % 1) 2 ° ( v 2t V2t [er 2V at ter 2 ot (12)

The resultant equations (10) and (12) also give a solution of the problem of the temperature field of
a spark for a gas velocity v =0,

Temperature on the channel axis, T(0, z, t), is determined from the following formula:

1 7 0 142z l—2z
0,28=—Tp |t 9 2 e L2, (13)
TO 2 H=—5T (1/2at V2at)[eri a M awya ]

For r = 0, the P-function is

P i._ ,._(_)_. =1 — exp (._ fg ) «
Voa ' Vi dat )’
therefore, we obtain for T(0, z, t) the analytic expression

By l42 [—2
f = f = . (14)
4at )Her ova 2Vat]

T, 2, t)=—;~ To[l —exp (—

The temperature at the boundary of the channel, T(ry, z, t), is given by the equation

re

1 e 3 ) [+2 l—z
T2 = To [l exp( 2at ) "( 0t Herf 2V of o 2Vat]
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Fig. 1. T/T0 as a function of r/ro 1) at zero time; 2) after 10-% 3) 10-% 4)
2.5-10-% 5) 5-1075% 6) 10! se

Fig. 2. Temperature distribution in discharge gap: 1) after 10-% 2) 2.5-10-%
3) 5-107% 4) 1-10~* sec.

B. Applying the Laplace—Hankel transformation

P(p, 0, 2) = 5 exp (— pt) dt j. rT(r, 2, ) J,(or)dr
H] H]

to Eq. (3), we obtain the operator equations

b, =T, j Jo(or) rdr 4+ a(— o, +¥7,,),
) {16)

PPs = a(— ™, + ¥;,,)-

Here, the subscripts 1 and 2 refer respectively to the regions |z} = ! and |zl > l. Furthermore, the boundary
conditions transform to:

q’;z’.::o = O’ WEL:m = 0,

1Pl ,2_1 w2|z.=1, w}zlz—! w2z'z=l

am)

The equation system (16) has the following solutions:

P, = A, exp [— ]//—% + 022] + A, exp [‘/% -+ ng] -+

3 p -+ ac?

/% L ozz] + B, exp [l/—z‘ -+ 024 .

P, = B, exp [_ l/

To

Ts S Jo (or) rdr
o

3

The integral transforms found after substitution of the values of the coefficients A, A,, B,, and B, with
the help of Eq. (17) have the form

7o

T, g Jolor'yr'dr’

i a . /
Y= {1—7 exp [— V %+a2(z+l)]~—é exp [—]/ %+a2({——z>J},

To

Toj Jo(or'yr'dr’ )
0p+aa2 {exp[ ]/—+02(2—l)~ew[ L/ p+oﬂ(z+z)]}

The inverse transforms of the functions ¢, and ¢,, in accordance with the expressions for the inverse La-
place —Hankel transformation, are given by a single expression

{+z | —z

- erf — ] j r'dr’ jexp (~— ao®) J, (or) J, (or') odo.
oV af eva 1) o (o7 o

Py =

T(r, 2z, t)= —; T, [erf
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5 : in the dynamic mode: 1) for v = 0;
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Further, we obtain as the result of identity transformations [1]

r

. 4 9 1 % '
T(r, z, ) = To [erf l+i + erf ! /i] [r’dr’ exp[-r T ]10( il )
. P .

4at 2 at 2/ at 4at 2at

Considering Eq. (11), we obtain for the temperature function

1 t r {42 [—z
T(r, 2, ) =— TP | —2, T i Z (-
( ) g9 ¢ ( v 2at v 2at ) [er 2y at ter 2V at }’

which agrees precisely with Eq. (12).

The calculated dependence of the reduced temperature T/T, on the dimensionless radius r/r; is
shown in Fig. 1 for different times (at z = 0). In the calculations, we used the values: a =1,87-10% m?
/sec for air [4], 2ry = 1.10*m, and 21 =2-107° m. It is clear from the figure that heat is transported
an insignificant distance. Thus the region at a diameter 3r; is heated only 10~* sec after spark initiation,
but the heating is negligible.

Equation (12), (14), and (15) indicate the form of temperature distribution along the discharge gap
is independent of r. The temperature profile for the spark channel axis is shown in Fig. 2, The tempera-
ture T/T, remains practically constant over the entire length of the discharge gap, dropping sharply at
the end to a value of 0.5 T/T, for z =0, The value of the function T/T, is almost unchanged over the short
times we are considering since the loss of heat along the x axis into the surrounding medium is negligibly
small,

2. We consider the case of the dynamic mode v # 0, Using the substitution

2
T,y 2 y=Ulx, y, 2, )exp [-—ﬂ_{__v_)f_])
4a 2a
we bring Eq. (2) to the form
; i vx
U:aAU _a_ X, ,Z,te L___
t +7"f( y )Xp{tla 2a]

Then transforming to eylindrical coordinates and applying the Green's function method, we obtain

2f Ur Cos @ [+z l—z
T(r, z, @, t) = 9@ ex ——P—, ][erf -+ erf — ]
5@ )=y P [ T oV a oV at

To , o
M _r+ r { ex rr
X S\r dr exp[ oo ] J p odt

0 1]

The integral with respect to ¢' in Eq. (18) is not expressible in general form through known functions, We

therefore confine ourselves to the two limiting cases: temperature distribution in the direction ¢ = 0 con-
ciding with gas motion and in the opposite direction ¢ =n. In that case, integrating with respect to ¢, we
obtain

(18)

cos(p—9’) — Y cos q)'] dy’.
2a
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T(, 2 0, t)=—1~TP( h 1 )[erf Iz e l=2 ] (19)

2 "’ Voot~ V2 2y at 2V af
1 r r+ut 4z I—z

T(r, 2, m, t) = — TP( L, — )[eri — { — ] (20)
2 "\ Vo V2t 2y af e 2Vat |

In the limiting case v =0, Egs. (19) and (20) transform identically into Eq. (12),

The time dependence of the reduced temperature on the spark channel axis is shown in Fig, 3 for
various gas flow rates. Fall in temperature occurs very rapidly and T/T, (for v = 1 m/sec) practically
goes to zero in a time t = 5-10~% sec, A difference in the values of the function T/T, in the static and
dynamic modes is only observed for v > 0,5 m/sec,

The equations (10}, (12), (14), (15), {19), and (20) which were obtained make it possible to perform
numerical calculations of the temperature fields in sparks both for a given value of T, and for known values
of the energy and radius of a spark channel,
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